Fredholm property of general elliptic problems
نویسندگان
چکیده
منابع مشابه
Fredholm Property of General Elliptic Problems
Linear elliptic problems in bounded domains are normally solvable with a finite-dimensional kernel and a finite codimension of the image, that is, satisfy the Fredholm property, if the ellipticity condition, the condition of proper ellipticity and the Lopatinskii condition are satisfied. In the case of unbounded domains these conditions are not sufficient any more. The necessary and sufficient ...
متن کاملNormal Solvability of General Linear Elliptic Problems
The paper is devoted to general elliptic problems in the Douglis-Nirenberg sense. We obtain a necessary and sufficient condition of normal solvability in the case of unbounded domains. Along with the ellipticity condition, proper ellipticity and Lopatinsky condition that determine normal solvability of elliptic problems in bounded domains, one more condition formulated in terms of limiting prob...
متن کاملPositivity preserving property for a class of biharmonic elliptic problems
The lack of a general maximum principle for biharmonic equations suggests to study under which boundary conditions the positivity preserving property holds. We show that this property holds in general domains for suitable linear combinations of Dirichlet and Navier boundary conditions. The spectrum of this operator exhibits some unexpected features: radial data may generate nonradial solutions....
متن کاملA General Fredholm Theory III: Fredholm Functors and Polyfolds
2 Ep-Groupoids and Generalized Maps 17 2.1 Ep-Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Functors and Equivalences . . . . . . . . . . . . . . . . . . . . 21 2.3 Inversion of Equivalences and Generalized Maps . . . . . . . . 28 2.4 Strong Bundles over Ep-Groupoids . . . . . . . . . . . . . . . 33 2.5 Auxiliary Norms . . . . . . . . . . . . . . . . . . . . . . . . . 4...
متن کاملPositive Solutions of Critical Quasilinear Elliptic Problems in General Domains
We consider a certain class of quasilinear elliptic equations with a term in the critical growth range. We prove the existence of positive solutions in bounded and unbounded domains. The proofs involve several generalizations of standard variational arguments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Moscow Mathematical Society
سال: 2006
ISSN: 0077-1554,1547-738X
DOI: 10.1090/s0077-1554-06-00159-2